Plant height is measured in meters and relates to fully developed mature generative plants growing in the wild. The data were taken preferably from Kleyer et al. (2008), Guarino et al. (2019), Kaplan et al. (2019), French Flora database (2020) and complemented by additional sources such as national and regional floras. Each species is characterized by a mean value calculated across available datasets.
Axmanová, I. (2022). Plant height. – www.FloraVeg.EU.
Guarino, R., La Rosa, M. & Pignatti, S. (Eds) (2019). Flora d'Italia, volume 4. Bologna: Edagricole.
French Flora database (baseflor), project of Flore et végétation de la France et du Monde: CATMINAT. Available at http://philippe.julve.pagesperso-orange.fr/catminat.htm [accessed June 2020]
Kaplan, Z., Danihelka, J., Chrtek, J. Jr., Kirschner, J., Kubát, K., Štěpánek, J. & Štech, M. (Eds) (2019). Klíč ke květeně České republiky [Key to the flora of the Czech Republic]. Ed. 2. Praha: Academia.
Kleyer, M., Bekker, R. M., Knevel, I. C., Bakker, J. P., Thompson, K., Sonnenschein, M., … Peco, B. (2008). The LEDA Traitbase: A database of life-history traits of the Northwest European flora. Journal of Ecology, 96(6), 1266–1274. https://doi.org/10.1111/j.1365-2745.2008.01430.x
Life span categories reflect the length of life duration of individual species. Annual plants finish their life cycle within one growing season. Biennial or short-lived plants are overwintering, growing only vegetatively in the first season and fruiting in the following season/s. Most of them are monocarpic, i.e. they finish their life cycle after producing fruits. Perennial plants can stay in vegetative form for several seasons, repeatedly flower and produce seeds (polycarpic strategy). Some species were assigned to more than one category because of their different life span in different parts of Europe, e.g., annual life span in northern Europe and biennial or short-lived life span in the Mediterranean.
The data were compiled from Klotz et al. 2002, Săvulescu (1952-76) and complemented by additional sources such as national and regional floras. If possible we used also the life form assessment to decide the life span category.
Dřevojan, P., Čeplová, N., Štěpánková, P., & Axmanová, I. (2023). Life span. – www.FloraVeg.EU.
Klotz, S., Kühn, I. & Durka, W. (2002). BIOLFLOR – Eine Datenbank zu biologisch-ökologischen Merkmalen der Gefäßpflanzen in Deutschland. Schriftenreihe für Vegetationskunde, 38, 1–334.
Săvulescu, T. (Ed.) (1952–1976). Flora Republicii Populare Române – Flora Republicii Socialiste România. Vols 1–13. București: Editura Academiei Republicii Populare Române, Academia Republicii Socialiste România.
The main categories of the life-form classification follow the system of Raunkiaer (1934), which is based on the position of the buds that survive the unfavourable season. In addition, we use auxiliary categories where it is possible to use finer differentiation.
At least one main category is assigned to each species, while some species can belong to more than one main category. Phanerophyte is a perennial woody or succulent plant with regenerative buds higher than 30 cm above the soil surface (includes trees, shrubs and tall succulents, excludes lianas and epiphytes). Chamaephyte is a perennial herb, low woody plant or succulent with regenerative buds above ground level, but not taller than 30 cm (includes dwarf shrubs, semi-shrubs, small succulents and some herbs). Hemicryptophyte is a perennial or biennial herb with regenerative buds on shoots at the ground level. Geophyte is a perennial plant with regenerative buds located belowground, usually with bulbs, tubers, or rhizomes. Hydrophyte is a plant that survives unfavourable seasons by means of buds that are at the bottom of a water body. Therophyte is a summer- or winter-annual herb that survives adverse seasons only as seeds and germinates in autumn, winter or spring. Epiphyte is either parasitic or non-parasitic plant that grows on other plants.
Auxiliary categories are only used for some species. Tree is a phanerophyte with a stem and a crown. Shrub is a phanerophyte branching from the stem base. Woody liana is a phanerophyte in the form of a long-stemmed woody vine. Semi-shrub (i.e. suffruticose chamaephyte) is a chamaephyte with shoots that usually grow straight up, bear leaves and flowers and die at the end of the growing season except for their lower part, which bears buds. Dwarf shrub is a chamaephyte with shoots that lignify instead of dying. Herbaceous liana is a hemicryptophyte, geophyte or therophyte with climbing aboveground stems.
Data were compiled from several databases and floras (Săvulescu 1952–1976, Horváth et al. 1995, Klotz et al. 2002, Tavşanoğlu & Pausas 2018, Guarino et al. 2019, Kaplan et al. 2019, French Flora database), European broad-scale studies (Wagner et al. 2017, Giulio et al. 2020), and different online sources (e.g. GreekFlora.gr). In the case of different assessments in original data sources, we critically revised them using additional sources.
Dřevojan, P., Čeplová, N., Štěpánková, P., & Axmanová, I. (2023) Life form. – www.FloraVeg.EU.
Giulio, S., Acosta, A. T. R., Carboni, M., Campos, J. A., Chytrý, M., Loidi, J., … Marcenò, C. (2020). Alien flora across European coastal dunes. Applied Vegetation Science, 23(3), 317–327. https://doi.org/10.1111/avsc.12490
GreekFlora.gr. Available at https://www.greekflora.gr/ [accessed June 2020]
Guarino, R., La Rosa, M. & Pignatti, S. (Eds) (2019). Flora d'Italia, volume 4. Bologna: Edagricole.
Horváth, F., Dobolyi, Z. K., Morschhauser, T., Lõkös, L., Karas, L. & Szerdahelyi, T. (1995). Flóra adatbázis 1.2 – taxonlista és attribútum-állomány. [FLORA database 1.2 – lists of taxa and relevant attributes.] Vácrátót: FLÓRA munkacsoport, MTA-ÖBKI, MTM Növénytára.
French Flora database (baseflor), project of Flore et végétation de la France et du Monde: CATMINAT. Available at http://philippe.julve.pagesperso-orange.fr/catminat.htm [accessed June 2020]
Kaplan Z., Danihelka J., Chrtek J. Jr., Kirschner J., Kubát K., Štěpánek J. & Štech M. (Eds.) (2019). Klíč ke květeně České republiky [Key to the flora of the Czech Republic]. Ed. 2. Praha: Academia.
Klotz, S., Kühn, I. & Durka, W. (2002). BIOLFLOR – Eine Datenbank zu biologisch-ökologischen Merkmalen der Gefäßpflanzen in Deutschland. Schriftenreihe für Vegetationskunde, 38, 1–334.
Raunkiaer C. (1934). The life forms of plants and statistical plant geography. Oxford: Clarendon Press.
Tavşanoğlu, Ç., & Pausas, J. (2018). A functional trait database for Mediterranean Basin plants. Scientific Data, 5, 180135. https://doi.org/10.1038/sdata.2018.135
Wagner, V., Chytrý, M., Jiménez-Alfaro, B., Pergl, J., Hennekens, S., Biurrun, I., … Pyšek, P. (2017). Alien plant invasions in European woodlands. Diversity and Distributions, 23(9), 969–981. https://doi.org/10.1111/ddi.12592
Săvulescu, T. (Ed.) (1952–1976). Flora Republicii Populare Române – Flora Republicii Socialiste România. Vols 1–13. București: Editura Academiei Republicii Populare Române, Academia Republicii Socialiste România.
Specific leaf area (SLA) is the ratio of leaf area to leaf dry mass expressed in mm2 mg-1, reflecting the amount of energy plants invest in their leaf biomass. SLA is related to plant growth strategy with respect to water availability and temperature. The data were taken preferably from Kleyer et al. (2008), Tavşanoğlu & Pausas (2018), Ladouceur et al. (2019) and complemented by additional sources. Each species is characterized by a mean value calculated across available datasets.
Axmanová, I. (2022). Specific leaf area. – www.FloraVeg.EU.
Kleyer, M., Bekker, R. M., Knevel, I. C., Bakker, J. P., Thompson, K., Sonnenschein, M., … Peco, B. (2008). The LEDA Traitbase: A database of life-history traits of the Northwest European flora. Journal of Ecology, 96(6), 1266–1274. https://doi.org/10.1111/j.1365-2745.2008.01430.x
Ladouceur, E., Bonomi, C., Bruelheide, H., Klimešová, J., Burrascano, S., Poschlod, P., … Jiménez-Alfaro, B. (2019). The functional trait spectrum of European temperate grasslands. Journal of Vegetation Science, 30(5), 777–788. https://doi.org/10.1111/jvs.12784
Tavşanoğlu, Ç., & Pausas, J. (2018). A functional trait database for Mediterranean Basin plants. Scientific data, 5, 180135. https://doi.org/10.1038/sdata.2018.135
The months of the beginning and end of flowering across Europe are given. The data were compiled from Kaplan et al. 2019, French Flora database and Guarino et al. 2019. For each species, we provide a maximal flowering range across available sources.
Axmanová, I. (2022). Flowering period. – www.FloraVeg.EU.
Guarino, R., La Rosa, M. & Pignatti, S. (Eds) (2019). Flora d'Italia, volume 4. Bologna: Edagricole.
GreekFlora.gr. Available at https://www.greekflora.gr/ [accessed June 2020]
French Flora database (baseflor), project of Flore et végétation de la France et du Monde: CATMINAT. Available at http://philippe.julve.pagesperso-orange.fr/catminat.htm [accessed June 2020]
Kaplan Z., Danihelka J., Chrtek J. Jr., Kirschner J., Kubát K., Štěpánek J. & Štech M. (eds) (2019) Klíč ke květeně České republiky [Key to the flora of the Czech Republic]. Ed. 2. – Academia, Praha.
Ladouceur, E., Bonomi, C., Bruelheide, H., Klimešová, J., Burrascano, S., Poschlod, P., … Jiménez-Alfaro, B. (2019). The functional trait spectrum of European temperate grasslands. Journal of Vegetation Science, 30(5), 777–788. https://doi.org/10.1111/jvs.12784
Săvulescu, T. (Ed.) (1952–1976). Flora Republicii Populare Române – Flora Republicii Socialiste România. Vols 1–13. București: Editura Academiei Republicii Populare Române, Academia Republicii Socialiste România.
Seed mass represent the mean weight of 1000 seeds in a dry state, measured in grams. The data were taken preferably from Kleyer et al. (2008), Hintze et al. (2013), García-Gutiérrez et al. (2018) and Seed Information Database (Royal Botanic Gardens Kew 2021) and complemented by additional sources such as national and regional floras. Each species is characterized by a mean value calculated across available datasets. Upon request, minimum, maximum and median values are also available.
Axmanová, I. (2022). Seed mass. – www.FloraVeg.EU.
García-Gutiérrez, T., Jiménez-Alfaro, B., Fernández-Pascual, E., & Müller, J. V. (2018). Functional diversity and ecological requirements of alpine vegetation types in a biogeographical transition zone. Phytocoenologia, 77–89. https://doi.org/10.1127/phyto/2017/0224
Hintze, C., Heydel, F., Hoppe, C., Cunze, S., König, A., & Tackenberg, O. (2013). D3: The Dispersal and Diaspore Database – Baseline data and statistics on seed dispersal. Perspectives in Plant Ecology, Evolution and Systematics, 15(3), 180–192. https://doi.org/10.1016/j.ppees.2013.02.001
Kleyer, M., Bekker, R. M., Knevel, I. C., Bakker, J. P., Thompson, K., Sonnenschein, M., … Peco, B. (2008). The LEDA Traitbase: A database of life-history traits of the Northwest European flora. Journal of Ecology, 96(6), 1266–1274. https://doi.org/10.1111/j.1365-2745.2008.01430.x
Royal Botanic Gardens Kew. (2021). Seed Information Database (SID). Version 7.1. Available at: http://data.kew.org/sid/ [accessed May 2021]
Dispersal mode (dispersal syndrome, dispersal type) characterizes plant dispersal ability. It is represented by following categories: (i) local non-specific dispersal, which combines self-dispersal (autochory) and dispersal initiated by wind, where diaspores do not have any efficient special dispersal features, including several dispersal modes (namely ballochory, blastochory, boleochory, barochory); (ii) myrmecochory (ant dispersal); (iii) wind dispersal (anemochory), diaspores have special dispersal features such as hem, pappus, trichomes, dusty seeds or the species are tumbleweeds; (iv) animal dispersal includes dyszoochory, i.e. diaspores foraged by animals, which sometimes hide them as stock; (v) endozoochory, i.e. dispersal in animal gastrointestinal tract, and (vi) epizoochory, i.e., dispersal of diaspores attached on animal fur; special case is the (vii) anthropochory, i.e. human dispersal and (viii) hydrochory (water dispersal). Please note that hydrochory is not considered in the dispersal distance classes classification.
The dispersal modes are mainly estimated from species' morphological characteristics.
Lososová Z., Axmanová I., Chytrý M., Midolo G., Abdulhak S., Karger D.N., Renaud J., Van Es J., Vittoz P. & Thuiller W. (2023). Seed dispersal distance classes and dispersal modes for the European flora. Global Ecology and Biogeography, 32(9), 1485–1494.
Vittoz P. & Engler R. (2007). Seed dispersal distances: a typology based on dispersal modes and plant traits. Botanica Helvetica, 117, 109–124.
Dispersal distance classes are represented by ordered classes from 1 to 7, where classes 1 to 6 represent a gradient from short-distance dispersal to long-scale dispersal. The last class represents the dispersal mediated by humans. For species of the last class the assignment to the previous six classes and natural dispersal mode are given. The assignment of individual plants follows Lososová et al. (2023), a dataset prepared using the adjusted methodology of Vittoz & Engler (2007).
To assign plants into dispersal distance classes, several plant characteristics were obtained from various sources, namely plant height, life form, predominant dispersal mode, seed mass, typical habitat, plant geographical origin and information on dispersal by humans. In contrast to the original approach of Vittoz & Engler (2007), definitions of the dispersal distance classes were slightly modified.
Class 1 contains species shorter than 0.3 m. Their seeds do not have any specific dispersal features. Species are mostly self-dispersed, although seed dispersal can be initiated by wind, e.g., by shaking the fruit, which causes the diaspore to fall down. Class 2 is the most species-rich, including species with non-specific local dispersal strategy taller than 0.3 m. Class 3 includes ant-dispersed (myrmecochorous) species and wind-dispersed (anemochorous) forest herbs and dwarf shrubs. Class 4 is the least species-rich, including less efficient wind-dispersed woody plants and tumbleweeds. Class 5 includes wind-dispersed herbs and shrubs of open habitats and wind-dispersed trees with more efficient dispersal units (with trichomes). Class 6 includes species with different modes of animal dispersal. They can be dyszoochorous (i.e., foraged by animals, which sometimes hide them as stock), endozoochorous (i.e., dispersal in animal gastrointestinal tract), and epizoochorous (i.e., dispersal on animal fur). Finally, class 7 contains human-dispersed (antropochorous) species.
The species of the last class are also classified into one of the previous six classes based on their natural dispersal mode. Only classes 1-6 can be used in studies at the landscape scale where it is assumed that most species disperse naturally. All seven classes can be used in studies at a broader geographical scale where rare events of long-distance human dispersal are important.
Classes
Lososová Z., Axmanová I., Chytrý M., Midolo G., Abdulhak S., Karger D.N., Renaud J., Van Es J., Vittoz P. & Thuiller W. (2023). Seed dispersal distance classes and dispersal modes for the European flora. Global Ecology and Biogeography, 32(9), 1485–1494.
Vittoz P. & Engler R. (2007). Seed dispersal distances: a typology based on dispersal modes and plant traits. Botanica Helvetica, 117, 109–124.
In plant parasitism, two groups can be distinguished based on two different mechanisms. The first group of parasitic plants includes those directly parasitizing on another plant. These plants are called haustorial parasites. Using a specialized organ, the haustorium, they attach themselves to other plants and uptake resources from the host’s vascular bundles. The second group comprises mycoheterotrophic plants, which parasitise fungi via mycorrhizal interactions and gain organic carbon from them. Plants in both groups display variable dependence on their host organism.
The functional categorization of parasitic plants has been a topic of an active debate that is still ongoing. The traditional categories are based on the ability to perform photosynthesis (photosynthetic hemiparasites and non-green holoparasites) and the location of the haustoria (root and stem parasites) (Heide-Jørgensen 2008). However, such a classification system struggles with phenomena such as rudimentary photosynthesis in some species, variable photosynthetic activity throughout the life cycle, and the existence of parasitic plants that integrate with their host to such an extent that they can be considered endophytic. For the functional classification of European parasitic plants, we have adopted the most recent classification system proposed by Teixeira-Costa & Davis (2021) with small further modifications. This system relies primarily on ontogenetic development and strategies of attachment to the host. The values of other important functional traits, including photosynthetic capacity, type of vascular bundle connection, development of the primary haustorium, and location of haustoria on the host are also well discriminated by the categories of Teixeira-Costa & Davis (2021).
In mycoheterotrophic plants, the initial developmental stages (gametophytes in lycophytes and ferns or belowground seedling stages of other plants) are not green, obtaining all their organic carbon and other resources from the fungus. The adult stages are still dependent on the mycorrhizal fungi as a source of water and mineral nutrients but vary in their dependence on heterotrophic carbon: there is a continuum from autotrophy, where the adult plants no longer use fungal carbon (this strategy is further called ‘initial mycoheterotrophy’), through mixotrophy (the adult plants combine autotrophic with heterotrophic nutrition; further called ‘partial mycoheterotrophy’), to heterotrophy (further called ‘full mycoheterotrophy’) (Merckx 2012). Two categories are distinguished here:
Těšitel, J., Těšitelová, T., Fahs, N., Blažek, P., Knotková, K. & Axmanová, I. (2024): Parasitism and mycoheterotrophy. – www.FloraVeg.eu.
Bellino, A., Alfani, A., Selosse, M.-A., Guerrieri, R., Borghetti, M., & Baldantoni, D. (2014). Nutritional regulation in mixotrophic plants: New insights from Limodorum abortivum. Oecologia, 175(3), 875–885. https://doi.org/10.1007/s00442-014-2940-8
Cameron, D. D., Preiss, K., Gebauer, G., & Read, D. J. (2009). The chlorophyll-containing orchid Corallorhiza trifida derives little carbon through photosynthesis. New Phytologist, 183(2), 358–364. https://doi.org/10.1111/j.1469-8137.2009.02853.x
Heide-Jørgensen, H. S. (2008). Parasitic flowering plants. Brill, Leiden.
Kubat, R. & Weber, H. C. (1987). Zur Biologie von Rhynchcorys elephas (L.) Griseb. (Scrophulariaceae). Beiträge zur Biologie der Pflanzen, 62, 239–250.
McNeal, J. R., Arumugunathan, K., Kuehl, J. V., Boore, J. L., & dePamphilis, C. W. (2007). Systematics and plastid genome evolution of the cryptically photosynthetic parasitic plant genus Cuscuta (Convolvulaceae). BMC Biology, 5(1), 55. https://doi.org/10.1186/1741-7007-5-55
Merckx, V. S. F. T. (Ed). (2012). Mycoheterotrophy: the biology of plants living on fungi. Springer, Berlin.
Miller, J. R., & Tocher, R. D. (1975). Photosynthesis and respiration of Arceuthobium tsugense (Loranthaceae). American Journal of Botany, 62(7), 765–769. https://doi.org/10.2307/2442068
Preiss, K., Adam, I. K. U., & Gebauer, G. (2010). Irradiance governs exploitation of fungi: Fine-tuning of carbon gain by two partially myco-heterotrophic orchids. Proceedings of the Royal Society B: Biological Sciences, 277(1686), 1333–1336. https://doi.org/10.1098/rspb.2009.1966
Rey, L., Sadik, A., Fer, A., & Renaudin, S. (1991). Trophic relations of the dwarf mistletoe Arceuthobium oxycedri with its host Juniperus oxycedrus. Journal of Plant Physiology, 138(4), 411–416. https://doi.org/10.1016/S0176-1617(11)80515-8
Schiebold, J. M.-I., Bidartondo, M. I., Lenhard, F., Makiola, A., & Gebauer, G. (2018). Exploiting mycorrhizas in broad daylight: Partial mycoheterotrophy is a common nutritional strategy in meadow orchids. Journal of Ecology, 106(1), 168–178. https://doi.org/10.1111/1365-2745.12831
Teixeira-Costa, L., & Davis, C. C. (2021). Life history, diversity, and distribution in parasitic flowering plants. Plant Physiology, 187(1), 32–51. https://doi.org/10.1093/plphys/kiab279
Těšitel, J. (2016). Functional biology of parasitic plants: A review. Plant Ecology and Evolution, 149(1), Article 1. https://doi.org/10.5091/plecevo.2016.1097
Těšitel, J., Těšitelová, T., Blažek, P., & Lepš, J. (2016). Parasitism and mycoheterotrophy.
www.pladias.cz.
Weber, H. C. (1973). Zur Biologie von Tozzia alpina L. (Standort, Wirtspflanzen, Entwicklung und Parasitismus). Beiträge zur Biologie der Pflanzen, 49, 237–249.
Zimmer, K., Meyer, C., & Gebauer, G. (2008). The ectomycorrhizal specialist orchid Corallorhiza trifida is a partial myco-heterotroph. New Phytologist, 178(2), 395–400. https://doi.org/10.1111/j.1469-8137.2007.02362.x
Carnivorous plants attract, trap and kill their prey, mainly insects, small crustaceans and protozoans, and subsequently absorb the nutrients from the dead bodies. Carnivorous species occur in environments with extremely low availability of nutrients, especially nitrogen and phosphorus, e.g. mires. In contrast, they usually have enough light (open habitats) and high water table or precipitation levels (Fleischmann et al. 2017). Therefore, the carnivory improves the intake of nutrients essential for growth but sparse in the environment, while the main source of energy for these plants is photosynthesis (Fleischmann et al. 2017).
Although there is a variety of morphological structures and trapping mechanisms, all the traps evolved as more or less complicated modifications of leaves with glandulous hairs (Hedrich & Fukushima 2021). Examples of active-hunting carnivorous plants include Aldrovanda with snap traps and Utricularia with suction traps. Typical representatives of the passive-trapping species can be found in the genera Drosera, Drosophyllum and Pinguicula, which have specific types of adhesive leaves. Another passive mechanism is the pitfall trap of Sarracenia (Hedrich & Fukushima 2021). Some species can combine adhesive traps with active movement of either glands or parts of the leaves (e.g. some species of Drosera).
The carnivory evolved independently in relatively distant lineages of angiosperms. There are carnivorous families within the orders Poales, Oxalidales, Caryophyllales, Ericales and Lamiales (Hedrich & Fukushima 2021). This convergent evolution of carnivory was possible because the traits associated with carnivorous syndrome from trap development through prey digestion to nutrient absorption are modifications of structures found also in non-carnivorous ancestors, where these originally served as defending mechanisms (Hedrich & Fukushima 2021).
In Europe, there are only three native carnivorous families, namely Droseraceae, Drosophyllaceae (order Caryophyllales), and Lentibulariaceae (Lamiales). Carnivorous plants have however often been planted and imported to Europe. Some of these non-native carnivorous species introduced to Europe can also survive in natural habitats and establish vital populations. For example, the species of Sarracenia (Sarraceniaceae, Ericales), native to North America, have nowadays scattered secondary occurrences across western and northwestern Europe.
Axmanová, I. (2023): Carnivory. – www.FloraVeg.eu.
Fleischmann, A., Schlauer, J., Smith, S. A., & Givnish, T. J. (2017). Evolution of carnivory in angiosperms. In Ellison, A. & Adamec, L. (Eds.), Carnivorous Plants: Physiology, ecology, and evolution (p. 22–41). Oxford University Press. https://doi.org/10.1093/oso/9780198779841.003.0003
Hedrich, R., & Fukushima, K. (2021). On the Origin of Carnivory: Molecular Physiology and Evolution of Plants on an Animal Diet. Annual Review of Plant Biology, 72(1), 133–153. https://doi.org/10.1146/annurev-arplant-080620-010429
Plants that are able to form a symbiosis with nitrogen-fixing bacteria are classified as nitrogen-fixing plants or nitrogen fixers. Specific bacteria are able to fix atmospheric nitrogen in a way to make it directly accessible to the plants (Franche et al. 2009). For providing nitrogen to the plant, the bacteria receive carbon in return (Crews, 1999, Dilworth et al., 2008). When forming a symbiosis with vascular plants, these bacteria usually inhabit the roots of their symbiont, forming so called (root-)nodules (Akkermans & Houwers, 1983, Fyson & Sprent, 1980, Loureiro et al., 1994). Three different symbiotic relationships between vascular plants and bacteria can be distinguished: (1) with the endosymbiotic cyanobacteria Nostoc, (2) with rhizobia (e.g. Allorhizobium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium) and (3) with Frankia, so-called actinorhizal plants (Bond 1983, Pawlowski & Sprent 2007, Sprent 2008, Benson 2016, Tedersoo et al., 2018). Nitrogen fixation is not a completely phylogenetically conserved trait but evolved and disappeared a few times in the evolution of plants. For the first time it evolved in the Cycadales in Gymnosperms (symbiosis with cyanobacteria, plant species not native to Europe). Most of the nitrogen-fixing plants are however phylogenetically related and recruit from the so-called “Nitrogen-fixing clade” sensu Soltis et al. (1995). Only the family Zygophyllaceae (associated with rhizobia) and the non-native Gunnera, the only genus recorded in Europe associated with Nostoc, do not belong to this clade, representing the exceptions in Angiosperms. Only five native taxa (the genus Alnus, Hippophae rhamnoides, Myrica gale, Elaeagnus angustifolia and Coriaria myrtifolia) and some non-native species with sporadic occurrence are associated with Frankia in Europe. The largest number of nitrogen-fixing species form symbiosis with rhizobia. This includes almost all Fabaceae (uncertain genera and likely exceptions, respectively, are known only very few occurring in Europe: among others this includes Cercis, Erinacea, Gonocytisus, Hammatolobium, Podocytisus, Dorycnopsis (all native), Gleditsia, Cytisopsis, Styphnolobium, Gymnocladus (not native), plus Zygophyllaceae (with uncertain genera Balanites, Seetzenia and Tetraena occurring in Europe).
Assignment was done on the genus-level. Although rare cases of species-specific differences concerning the symbiotic nitrogen fixation status within one genus are known worldwide, for the European flora the general consent that the status is conserved on the genus level is still accepted. Assignment of “likely” or “unlikely” symbiosis with rhizobia is mainly based on their phylogenetic position where there has been no scientific study investigating the nitrogen fixation status of the genus directly or if studies showed diverging results.
Fahs, N., Blažek, P., Těšitel, J. & Axmanová, I. (2023). Symbiotic nitrogen fixation. – www.FloraVeg.eu.
Benson D. R. (2016). Frankia & actinorhizal plants. Available at https://frankia.mcb.uconn.edu/ [accessed on 1 Feb 2021]
Blažek, P. & Lepš, J. (2016). Symbiotic nitrogen fixation. – www.pladias.cz.
Bond, G. (1983). Taxonomy and distribution of non-legume nitrogen-fixing systems. In J. C. Gordon & C. T. Wheeler (Eds.), Biological nitrogen fixation in forest ecosystems: Foundations and applications (pp. 55–87). Springer Netherlands. https://doi.org/10.1007/978-94-009-6878-3_3
Crews, T. E. (1999). The presence of nitrogen fixing legumes in terrestrial communities: Evolutionary vs ecological considerations. Biogeochemistry, 46(1), 233–246. https://doi.org/10.1007/BF01007581
Dilworth M. J., James E. K., Sprent J. I., & Newton W. E. (Eds). (2008). Nitrogen-Fixing Leguminous Symbioses. Springer Netherlands.
Franche, C., Lindström, K., & Elmerich, C. (2009). Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant and Soil, 321(1), 35–59. https://doi.org/10.1007/s11104-008-9833-8
Fyson, A., & Sprent, J. I. (1980). A Light and Scanning Electron Microscope Study of Stem Nodules in Vicia faba L. Journal of Experimental Botany, 31(123), 1101–1106.
Loureiro, M. F., DE Faria, S. M., James, E. K., Pott, A., & Franco, A. A. (1994). Nitrogen-fixing stem nodules of the Legume, Discolobium pulchellum Benth. The New Phytologist, 128(2), 283–295. https://doi.org/10.1111/j.1469-8137.1994.tb04012.x
Pawlowski, K., & Sprent, J. I. (2008). Comparison Between Actinorhizal And Legume Symbiosis. In K. Pawlowski & W. E. Newton (Eds.), Nitrogen-fixing Actinorhizal Symbioses (pp. 261–288). Springer Netherlands. https://doi.org/10.1007/978-1-4020-3547-0_10
Soltis, D. E., Soltis, P. S., Morgan, D. R., Swensen, S. M., Mullin, B. C., Dowd, J. M., & Martin, P. G. (1995). Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms. Proceedings of the National Academy of Sciences of the United States of America, 92(7), 2647–2651.
Sprent, J. I. (2008). Evolution and Diversity of Legume Symbiosis. In M. J. Dilworth, E. K. James, J. I. Sprent, & W. E. Newton (Eds.), Nitrogen-fixing Leguminous Symbioses (pp. 1–21). Springer Netherlands. https://doi.org/10.1007/978-1-4020-3548-7_1
Tedersoo, L., Laanisto, L., Rahimlou, S., Toussaint, A., Hallikma, T., & Pärtel, M. (2018). Global database of plants with root-symbiotic nitrogen fixation: NodDB. Journal of Vegetation Science, 29(3), 560–568. https://doi.org/10.1111/jvs.12627
Origin in Europe was assessed according to the geographic origin of the species. Native taxa are plants that are native to at least part of Europe, although some of them are nowadays alien in other European regions. Species introduced intentionally or unintentionally by humans to Europe from other continents are alien (non-native) plants. We distinguished two categories of alien plants according to their residence time. Archaeophytes are plants introduced to Europe until the Middle Ages, while neophytes are plants introduced after 1500 AD. Data were compiled from Pyšek et al. (2012), GloNAF database (van Kleunen et al 2019), Verloove (2019), Euro+Med database (2021), POWO database (POWO 2021), complemented by additional sources such as national and regional floras.
Axmanová, I. (2022). Origin in Europe. – www.FloraVeg.EU.
van Kleunen, M., Pyšek, P., Dawson, W., Essl, F., Kreft, H., Pergl, J. et al. (2019). The Global Naturalized Alien Floras (GloNAF) database. Ecology, 100(1):e02542. https://doi.org/10.1002/ecy.2542
Euro+Med (2021). Euro+Med PlantBase – the information resource for Euro-Mediterranean plant diversity. Available at http://ww2.bgbm.org/EuroPlusMed/query.asp [accessed May 2021]
POWO (2021). Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Available at http://www.plantsoftheworldonline.org/ [accessed May 2021]
Pyšek P., Danihelka J., Sádlo J., Chrtek J. Jr., Chytrý M., … Tichý L. (2012) Catalogue of alien plants of the Czech Republic (2nd edition): checklist update, taxonomic diversity and invasion patterns. Preslia 84(2), 155–255.
Verloove, F. (2019). Manual of the Alien Plants of Belgium. Available at http://alienplantsbelgium.be/ [accessed May 2019]
Categories of nutrient relationship do not reflect fine differences of various habitats, on the contrary, they are defined very broadly. These categories can be derived also from the ordinal scale for reaction (1-9) defined by Ellenberg et al. (1991). Plants adapted to growing in extremely nutrient-poor soils are assigned to a category Dystrophic, which corresponds to the first degree of the Ellenberg scale (1), or if at least some nutrients are available to Oligotrophic category (2-3). Plants of intermediate habitats are assigned to the category Mesotrophic (4, 5), while plants of nutrient-rich substrates are in the category Eutrophic (6-8), or even Hypertrophic (9 degree at the Ellenberg scale). If available, we used Ellenberg-type indicator values aggregated to broader categories, in other cases, categories were assigned according to the knowledge of local experts.
Data were compiled from several sources available across Europe, namely the indicator-value datasets for Great Britain (Hill et al. 2000), Cantabrian Range in Spain (Jiménez-Alfaro et al. 2021), France (Julve 2015), Germany (Ellenberg et al. 2001, taken from Ellenberg & Leuschner 2010), Switzerland (Landolt et al. 2010), Austria (Karrer 1992), Czech Republic (Chytrý et al. 2018), Hungary (Borhidi 1995), Ukraine (Didukh 2011), Italy (Guarino & La Rosa 2019, with additional corrections by R. Guarino), Southern Aegean region of Greece (Böhling et al. 2002).
Axmanová, I. (2022). Nutrient relationship. – www.FloraVeg.EU.
Böhling, N., Greuter, W. & Raus, T. (2002). Zeigerwerte der Gefäßpflanzen der Südägäis (Griechenland) [Indicator values of the vascular plants in the Southern Aegean (Greece)]. Braun-Blanquetia, 32, 1–108.
Borhidi, A. (1995). Social behaviour types, the naturalness and relative ecological indicator values of the higher plants in the Hungarian flora. Acta Botanica Hungarica, 39, 97–181.
Chytrý, M., Tichý, L., Dřevojan, P., Sádlo, J. & Zelený, D. (2018). Ellenberg-type indicator values for the Czech flora. Preslia, 90, 83–103.
Didukh Ya.P. (2011). The ecological scales for the species of Ukrainian flora and their use in synphytoindication. Kyiv: Phytosociocentre.
Ellenberg, H., Weber, H. E., Düll, R., Wirth, V., Werner, W. & Paulißen, D. (1991). Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica, 18, 1–248.
Ellenberg, H. & Leuschner, C. (2010). Zeigerwerte der Pflanzen Mitteleuropas. In: Ellenberg H. & Leuschner, C., Vegetation Mitteleuropas mit den Alpen. Stuttgart: Verlag Eugen Ulmer.
French Flora database (baseflor), project of Flore et végétation de la France et du Monde: CATMINAT. Available at http://philippe.julve.pagesperso-orange.fr/catminat.htm [accessed June 2020]
Guarino, R., La Rosa, M. & Pignatti, S. (Eds) (2019). Flora d'Italia, volume 4. Bologna: Edagricole.
Hájek, M., Dítě, D., Horsáková, V., Mikulášková, E., Peterka, T., Navrátilová, J., … Horsák, M. (2020). Towards the pan-European bioindication system: Assessing and testing updated hydrological indicator values for vascular plants and bryophytes in mires. Ecological Indicators, 116, 106527.
Hill, M.O., Roy, D.B., Mountford, J.O., & Bunce, R.G.H. (2000). Extending Ellenberg’s indicator values to a new area: an algorithmic approach. Journal of Applied Ecology, 37, 3–15.
Jiménez-Alfaro, B., Carlón, L., Fernández-Pascual, E., Acedo, C., Alfaro-Saiz, E., Alonso Redondo, R., … Vázquez, V. M. (2021). Checklist of the vascular plants of the Cantabrian mountains. Mediterranean Botany, 42, e74570.
Karrer, G. (1992). Österreichische Waldboden-Zustandsinventur. Teil VII: Vegetationsökologische Analysen. Mitteilungen der forstlichen Bundesversuchsanstalt Wien, 168, 193-242.
Landolt, E., Bäumler, B., Erhardt, A., Hegg, O., Klötzli, F., Lämmler, W., … Wohlgemuth, T. (2010). Flora indicativa – Ökologische Zeigerwerte und biologische Kennzeichen zur Flora der Schweiz und der Alpen. Bern: Haupt Verlag.
Categories of salinity do not reflect fine differences of various habitats, on the contrary, they are defined very broadly. These categories can be derived also from the ordinal scale for reaction (0-9) defined by Ellenberg et al. (1991). Plants adapted to growing in soils without salt content are assigned to a category Non-saline, which corresponds to the first degree of the Ellenberg scale (0) and it is the prevailing category. Plants of slightly saline habitats are assigned to the category Slightly saline or brackish (1-4 of the Ellenberg scale), while plants of salt-rich substrates are in the category Saline (5-9). If available, we used Ellenberg-type indicator values aggregated to broader categories, in other cases, categories were assigned according to the knowledge of local experts.
Data were compiled from several sources available across Europe, namely the indicator-value datasets for Great Britain (Hill et al. 2000), France (Julve 2015), Germany (Ellenberg et al. 2001, taken from Ellenberg & Leuschner 2010), Switzerland (Landolt et al. 2010), Austria (Karrer 1992), Czech Republic (Chytrý et al. 2018), Hungary (Borhidi 1995), Ukraine (Didukh 2011), Italy (Guarino & La Rosa 2019, with additional corrections by R. Guarino), Southern Aegean region of Greece (Böhling et al. 2002).
Axmanová, I. (2022). Salinity relationship. – www.FloraVeg.EU.
Böhling, N., Greuter, W. & Raus, T. (2002). Zeigerwerte der Gefäßpflanzen der Südägäis (Griechenland) [Indicator values of the vascular plants in the Southern Aegean (Greece)]. Braun-Blanquetia, 32, 1–108.
Borhidi, A. (1995). Social behaviour types, the naturalness and relative ecological indicator values of the higher plants in the Hungarian flora. Acta Botanica Hungarica, 39, 97–181.
Chytrý, M., Tichý, L., Dřevojan, P., Sádlo, J. & Zelený, D. (2018). Ellenberg-type indicator values for the Czech flora. Preslia, 90, 83–103.
Didukh Ya.P. (2011). The ecological scales for the species of Ukrainian flora and their use in synphytoindication. Kyiv: Phytosociocentre.
Ellenberg, H., Weber, H. E., Düll, R., Wirth, V., Werner, W. & Paulißen, D. (1991). Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica, 18, 1–248.
Ellenberg, H. & Leuschner, C. (2010). Zeigerwerte der Pflanzen Mitteleuropas. In: Ellenberg H. & Leuschner, C., Vegetation Mitteleuropas mit den Alpen. Stuttgart: Verlag Eugen Ulmer.
French Flora database (baseflor), project of Flore et végétation de la France et du Monde: CATMINAT. Available at http://philippe.julve.pagesperso-orange.fr/catminat.htm [accessed June 2020]
Guarino, R., La Rosa, M. & Pignatti, S. (Eds) (2019). Flora d'Italia, volume 4. Bologna: Edagricole.
Hájek, M., Dítě, D., Horsáková, V., Mikulášková, E., Peterka, T., Navrátilová, J., … Horsák, M. (2020). Towards the pan-European bioindication system: Assessing and testing updated hydrological indicator values for vascular plants and bryophytes in mires. Ecological Indicators, 116, 106527.
Hill, M.O., Roy, D.B., Mountford, J.O., & Bunce, R.G.H. (2000). Extending Ellenberg’s indicator values to a new area: an algorithmic approach. Journal of Applied Ecology, 37, 3–15.
Karrer, G. (1992). Österreichische Waldboden-Zustandsinventur. Teil VII: Vegetationsökologische Analysen. Mitteilungen der forstlichen Bundesversuchsanstalt Wien, 168, 193-242.
Landolt, E., Bäumler, B., Erhardt, A., Hegg, O., Klötzli, F., Lämmler, W., … Wohlgemuth, T. (2010). Flora indicativa – Ökologische Zeigerwerte und biologische Kennzeichen zur Flora der Schweiz und der Alpen. Bern: Haupt Verlag.
Ellenberg-type indicator values for European plant species are expert-based rankings of plant species according to their ecological optima on main environmental gradients, using ordinal scales defined by Ellenberg et al. (1991). The indicator values for light are expressed on a scale from 1 to 9. Note that indicator values for trees refer to juvenile individuals in the herb and shrub layers.
Values for individual species were calculated as the means across available national or regional datasets of plant indicator values or were newly assigned based on species co-occurrences in European vegetation plots, see Tichý et al. (2023). Although they have one decimal place, the newly introduced indicator values are compatible with the original Ellenberg values. They can be used for large-scale studies of European flora and vegetation or gap-filling in regional datasets.
Datasets used for compilation include several sources, namely Ellenberg-type indicator values for Great Britain (Hill et al., 2000); France (Julve, 2015); Germany (Ellenberg et al., 2001, taken from Ellenberg & Leuschner, 2010); Czech Republic (Chytrý et al., 2018); Austria (Karrer, 1992); Hungary (Borhidi, 1995); Ukraine (Didukh, 2011) and Italy (Guarino & La Rosa, 2019, a corrected version prepared by R. Guarino, values 10–12 were rescaled to the value 9).
The European values and also the original and taxonomically harmonized regional datasets of Ellenberg-type indicator values are available in the Download section of this website.
Tichý L., Axmanová I., Dengler J., Guarino R., Jansen F., Midolo G., … Chytrý M. (2023). Ellenberg-type indicator values for European vascular plant species. Journal of Vegetation Science, 34, e13168. https://doi.org/10.1111/jvs.13168
Borhidi, A. (1995). Social behaviour types, the naturalness and relative ecological indicator values of the higher plants in the Hungarian flora. Acta Botanica Hungarica, 39, 97–181.
Chytrý M., Tichý L., Dřevojan P., Sádlo J. & Zelený D. (2018). Ellenberg-type indicator values for the Czech flora. Preslia 90: 83–103.
Didukh Ya.P. (2011). The ecological scales for the species of Ukrainian flora and their use in synphytoindication. Kyiv: Phytosociocentre.
Ellenberg H., Weber H. E., Düll R., Wirth V., Werner W. & Paulißen D. (1991). Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica, 18, 1–248.
Ellenberg, H. & Leuschner, C. (2010). Zeigerwerte der Pflanzen Mitteleuropas. In: Ellenberg H. & Leuschner, C., Vegetation Mitteleuropas mit den Alpen. Stuttgart: Verlag Eugen Ulmer.
Guarino, R., La Rosa, M. & Pignatti, S. (Eds) (2019). Flora d'Italia, volume 4. Bologna: Edagricole.
Hill, M.O., Roy, D.B., Mountford, J.O., & Bunce, R.G.H. (2000). Extending Ellenberg’s indicator values to a new area: an algorithmic approach. Journal of Applied Ecology, 37, 3–15.
Julve, P. (2015). Baseflor. Index botanique, écologique et chorologique de la flore de France (Baseflor. Botanical, ecological and chorological index of the flora of France). Available at http://philippe.julve.pagesperso-orange.fr/catminat.htm [accessed 2022].
Karrer, G. (1992). Österreichische Waldboden-Zustandsinventur. Teil VII: Vegetationsökologische Analysen (Austrian forest soil status inventory. Part VII: Vegetation ecology analyses). Mitteilungen Forstliche Bundesversuchsanstalt Wien, 168, 193–242.
Ellenberg-type indicator values for European plant species are expert-based rankings of plant species according to their ecological optima on main environmental gradients, using ordinal scales defined by Ellenberg et al. (1991). The indicator values for moisture are expressed on an ordinal scale from 1 to 12 defined by Ellenberg et al. (1991).
Values for individual species were calculated as the means across available national or regional datasets of plant indicator values or were newly assigned based on species co-occurrences in European vegetation plots, see Tichý et al. (2023). Although they have one decimal place, the newly introduced indicator values are compatible with the original Ellenberg values. They can be used for large-scale studies of European flora and vegetation or gap-filling in regional datasets.
Datasets used for compilation include several sources, namely Ellenberg-type indicator values for Great Britain (Hill et al., 2000); France (Julve, 2015); Germany (Ellenberg et al., 2001, taken from Ellenberg & Leuschner, 2010); Czech Republic (Chytrý et al., 2018); Austria (Karrer, 1992); Hungary (Borhidi, 1995); Ukraine (Didukh, 2011); Italy (Guarino & La Rosa, 2019, a corrected version prepared by R. Guarino); South Aegean region of Greece (Böhling et al., 2002); European mires (Hájek et al., 2020).
The European values and also the original and taxonomically harmonized regional datasets of Ellenberg-type indicator values are available in the Download section of this website.
Tichý L., Axmanová I., Dengler J., Guarino R., Jansen F., Midolo G., … Chytrý M. (2023). Ellenberg-type indicator values for European vascular plant species. Journal of Vegetation Science, 34, e13168. https://doi.org/10.1111/jvs.13168
Böhling, N., Greuter, W. & Raus, T. (2002). Zeigerwerte der Gefäßpflanzen der Südägäis (Griechenland) [Indicator values of the vascular plants in the Southern Aegean (Greece)]. Braun-Blanquetia, 32, 1–108.
Borhidi, A. (1995). Social behaviour types, the naturalness and relative ecological indicator values of the higher plants in the Hungarian flora. Acta Botanica Hungarica, 39, 97–181.
Chytrý M., Tichý L., Dřevojan P., Sádlo J. & Zelený D. (2018). Ellenberg-type indicator values for the Czech flora. Preslia 90: 83–103.
Didukh Ya.P. (2011). The ecological scales for the species of Ukrainian flora and their use in synphytoindication. Kyiv: Phytosociocentre.
Ellenberg H., Weber H. E., Düll R., Wirth V., Werner W. & Paulißen D. (1991). Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica, 18, 1–248.
Ellenberg, H. & Leuschner, C. (2010). Zeigerwerte der Pflanzen Mitteleuropas. In: Ellenberg H. & Leuschner, C., Vegetation Mitteleuropas mit den Alpen. Stuttgart: Verlag Eugen Ulmer.
Guarino, R., La Rosa, M. & Pignatti, S. (Eds) (2019). Flora d'Italia, volume 4. Bologna: Edagricole.
Hájek, M., Dítě, D., Horsáková, V., Mikulášková, E., Peterka, T., Navrátilová, J., … Horsák M. (2020). Towards the pan-European bioindication system: Assessing and testing updated hydrological indicator values for vascular plants and bryophytes in mires. Ecological Indicators, 116, 106527.
Hill, M.O., Roy, D.B., Mountford, J.O., & Bunce, R.G.H. (2000). Extending Ellenberg’s indicator values to a new area: an algorithmic approach. Journal of Applied Ecology, 37, 3–15.
Julve, P. (2015). Baseflor. Index botanique, écologique et chorologique de la flore de France (Baseflor. Botanical, ecological and chorological index of the flora of France). Available at http://philippe.julve.pagesperso-orange.fr/catminat.htm [accessed 2022].
Karrer, G. (1992). Österreichische Waldboden-Zustandsinventur. Teil VII: Vegetationsökologische Analysen (Austrian forest soil status inventory. Part VII: Vegetation ecology analyses). Mitteilungen Forstliche Bundesversuchsanstalt Wien, 168, 193–242.
Ellenberg-type indicator values for European plant species are expert-based rankings of plant species according to their ecological optima on main environmental gradients, using ordinal scales defined by Ellenberg et al. (1991). The indicator value for salinity are expressed on an ordinal scale from 0 to 9 defined by Ellenberg et al. (1991). It is a proxy for the concentration in the environment of soluble salts, including sulphates, chlorides and carbonates of sodium, potassium, calcium and magnesium.
Values for individual species were calculated as the means across available national or regional datasets of plant indicator values or were newly assigned based on species co-occurrences in European vegetation plots, see Tichý et al. (2023). Although they have one decimal place, the newly introduced indicator values are compatible with the original Ellenberg values. They can be used for large-scale studies of European flora and vegetation or gap-filling in regional datasets.
Datasets used for compilation include several sources, namely Ellenberg-type indicator values for Great Britain (Hill et al., 2000); France (Julve, 2015); Germany (Ellenberg et al., 2001, taken from Ellenberg & Leuschner, 2010); Czech Republic (Chytrý et al., 2018); Austria (Karrer, 1992); Hungary (Borhidi, 1995); Italy (Guarino & La Rosa, 2019, a corrected version prepared by R. Guarino, values 10–12 were rescaled to the value 9); South Aegean region of Greece (Böhling et al., 2002) and saline habitats in Central Europe (Dítě et al., 2023).
The European values and also the original and taxonomically harmonized regional datasets of Ellenberg-type indicator values are available in the Download section of this website.
Tichý L., Axmanová I., Dengler J., Guarino R., Jansen F., Midolo G., … Chytrý M. (2023). Ellenberg-type indicator values for European vascular plant species. Journal of Vegetation Science, 34, e13168. https://doi.org/10.1111/jvs.13168
Böhling, N., Greuter, W. & Raus, T. (2002). Zeigerwerte der Gefäßpflanzen der Südägäis (Griechenland) [Indicator values of the vascular plants in the Southern Aegean (Greece)]. Braun-Blanquetia, 32, 1–108.
Borhidi, A. (1995). Social behaviour types, the naturalness and relative ecological indicator values of the higher plants in the Hungarian flora. Acta Botanica Hungarica, 39, 97–181.
Chytrý M., Tichý L., Dřevojan P., Sádlo J. & Zelený D. (2018). Ellenberg-type indicator values for the Czech flora. Preslia 90: 83–103.
Dítě, D., Šuvada, R., Tóth, T. & Dítě, Z. (2023). Inventory of halophytes in inland central Europe. Preslia, 95.
Ellenberg H., Weber H. E., Düll R., Wirth V., Werner W. & Paulißen D. (1991). Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica, 18, 1–248.
Ellenberg, H. & Leuschner, C. (2010). Zeigerwerte der Pflanzen Mitteleuropas. In: Ellenberg H. & Leuschner, C., Vegetation Mitteleuropas mit den Alpen. Stuttgart: Verlag Eugen Ulmer.
Guarino, R., La Rosa, M. & Pignatti, S. (Eds) (2019). Flora d'Italia, volume 4. Bologna: Edagricole.
Hill, M.O., Roy, D.B., Mountford, J.O., & Bunce, R.G.H. (2000). Extending Ellenberg’s indicator values to a new area: an algorithmic approach. Journal of Applied Ecology, 37, 3–15.
Julve, P. (2015). Baseflor. Index botanique, écologique et chorologique de la flore de France (Baseflor. Botanical, ecological and chorological index of the flora of France). Available at http://philippe.julve.pagesperso-orange.fr/catminat.htm [accessed 2022].
Karrer, G. (1992). Österreichische Waldboden-Zustandsinventur. Teil VII: Vegetationsökologische Analysen (Austrian forest soil status inventory. Part VII: Vegetation ecology analyses). Mitteilungen Forstliche Bundesversuchsanstalt Wien, 168, 193–242.
Following Midolo et al. (2023), the indicator value for disturbance frequency is expressed as the log10 mean inverse of return time (in centuries) of disturbance, which is the mean interval between successive disturbance events. Disturbance frequency refers to all possible types of disturbance that may occur in a given habitat, including anthropogenic and natural disturbance as well as grazing and mowing. Because one habitat can be affected by more than one disturbance type, disturbance frequency values were estimated for the most important disturbance types characterizing each habitat. Data are reported as separate values for disturbance affecting the whole plant community (including all vegetation layers) and values considering the herb layer only. This separation accounts for the fact that disturbance regimes in the tree and shrub layers differ in severity and frequency from the disturbance regimes in the herb layer of the same community. For habitats with herbaceous vegetation only, the whole-community values are equal to the herb-layer values.
Midolo G., Herben T., Axmanová I., Marcenò C., Pätsch R., Bruelheide H., ... & Chytrý M. (2023). Disturbance indicator values for European plants. Global Ecology and Biogeography, 32, 24–34. https://doi.org/10.1111/GEB.13603
Herben, T., Chytrý, M., & Klimešová, J. (2016). A quest for species‐level indicator values for disturbance. Journal of Vegetation Science, 27(3), 628-636. https://doi.org/10.1111/jvs.12384>
Herben, T., Klimešová, J., & Chytrý, M. (2018). Effects of disturbance frequency and severity on plant traits: an assessment across a temperate flora. Functional Ecology, 32(3), 799-808. https://doi.org/10.1111/1365-2435.13011>
Following Midolo et al. (2023), the indicator value for disturbance frequency is expressed as the log10 mean inverse of return time (in centuries) of disturbance, which is the mean interval between successive disturbance events. Disturbance frequency refers to all possible types of disturbance that may occur in a given habitat, including anthropogenic and natural disturbance as well as grazing and mowing. Because one habitat can be affected by more than one disturbance type, disturbance frequency values were estimated for the most important disturbance types characterizing each habitat. Data are reported as separate values for disturbance affecting the whole plant community (including all vegetation layers) and values considering the herb layer only. This separation accounts for the fact that disturbance regimes in the tree and shrub layers differ in severity and frequency from the disturbance regimes in the herb layer of the same community. For habitats with herbaceous vegetation only, the whole-community values are equal to the herb-layer values.
Midolo G., Herben T., Axmanová I., Marcenò C., Pätsch R., Bruelheide H., ... & Chytrý M. (2023). Disturbance indicator values for European plants. Global Ecology and Biogeography, 32, 24–34. https://doi.org/10.1111/GEB.13603
Herben, T., Chytrý, M., & Klimešová, J. (2016). A quest for species‐level indicator values for disturbance. Journal of Vegetation Science, 27(3), 628-636. https://doi.org/10.1111/jvs.12384>
Herben, T., Klimešová, J., & Chytrý, M. (2018). Effects of disturbance frequency and severity on plant traits: an assessment across a temperate flora. Functional Ecology, 32(3), 799-808. https://doi.org/10.1111/1365-2435.13011>
Following Midolo et al. (2023), the indicator value for disturbance severity is expressed as a continuous value ranging from 0 (no change in biomass) to 1 (complete loss of plant cover). Disturbance severity refers to all possible types of disturbance that may occur in a given habitat, including anthropogenic and natural disturbance as well as grazing and mowing. Because one habitat can be affected by more than one disturbance type, disturbance severity values were estimated for the most important disturbance types characterizing each habitat. Data are reported as separate values for disturbance affecting the whole plant community (including all vegetation layers) and values considering the herb layer only. This separation accounts for the fact that disturbance regimes in the tree and shrub layers differ in severity and frequency from the disturbance regimes in the herb layer of the same community. For habitats with herbaceous vegetation only, the whole-community values are equal to the herb-layer values.
Midolo G., Herben T., Axmanová I., Marcenò C., Pätsch R., Bruelheide H., ... & Chytrý M. (2023). Disturbance indicator values for European plants. Global Ecology and Biogeography, 32, 24–34. https://doi.org/10.1111/GEB.13603
Herben, T., Chytrý, M., & Klimešová, J. (2016). A quest for species‐level indicator values for disturbance. Journal of Vegetation Science, 27(3), 628-636. https://doi.org/10.1111/jvs.12384>
Herben, T., Klimešová, J., & Chytrý, M. (2018). Effects of disturbance frequency and severity on plant traits: an assessment across a temperate flora. Functional Ecology, 32(3), 799-808. https://doi.org/10.1111/1365-2435.13011>
Following Midolo et al. (2023), the indicator value for disturbance severity is expressed as a continuous value ranging from 0 (no change in biomass) to 1 (complete loss of plant cover). Disturbance severity refers to all possible types of disturbance that may occur in a given habitat, including anthropogenic and natural disturbance as well as grazing and mowing. Because one habitat can be affected by more than one disturbance type, disturbance severity values were estimated for the most important disturbance types characterizing each habitat. Data are reported as separate values for disturbance affecting the whole plant community (including all vegetation layers) and values considering the herb layer only. This separation accounts for the fact that disturbance regimes in the tree and shrub layers differ in severity and frequency from the disturbance regimes in the herb layer of the same community. For habitats with herbaceous vegetation only, the whole-community values are equal to the herb-layer values.
Midolo G., Herben T., Axmanová I., Marcenò C., Pätsch R., Bruelheide H., ... & Chytrý M. (2023). Disturbance indicator values for European plants. Global Ecology and Biogeography, 32, 24–34. https://doi.org/10.1111/GEB.13603
Herben, T., Chytrý, M., & Klimešová, J. (2016). A quest for species‐level indicator values for disturbance. Journal of Vegetation Science, 27(3), 628-636. https://doi.org/10.1111/jvs.12384>
Herben, T., Klimešová, J., & Chytrý, M. (2018). Effects of disturbance frequency and severity on plant traits: an assessment across a temperate flora. Functional Ecology, 32(3), 799-808. https://doi.org/10.1111/1365-2435.13011>
Following Midolo et al. (2023), the indicator value for mowing frequency is expressed as the log10 mean inverse of return time (in centuries) of disturbance, which is the mean interval between successive mowing events.
Midolo G., Herben T., Axmanová I., Marcenò C., Pätsch R., Bruelheide H., ... & Chytrý M. (2023). Disturbance indicator values for European plants. Global Ecology and Biogeography, 32, 24–34. https://doi.org/10.1111/GEB.13603
Herben, T., Chytrý, M., & Klimešová, J. (2016). A quest for species‐level indicator values for disturbance. Journal of Vegetation Science, 27(3), 628-636. https://doi.org/10.1111/jvs.12384>
Herben, T., Klimešová, J., & Chytrý, M. (2018). Effects of disturbance frequency and severity on plant traits: an assessment across a temperate flora. Functional Ecology, 32(3), 799-808. https://doi.org/10.1111/1365-2435.13011>
Following Midolo et al. (2023), the indicator value for grazing pressure is expressed as a continuous value ranging from 0 (no change in biomass) to 1 (complete loss of plant cover) caused by grazing.
Midolo G., Herben T., Axmanová I., Marcenò C., Pätsch R., Bruelheide H., ... & Chytrý M. (2023). Disturbance indicator values for European plants. Global Ecology and Biogeography, 32, 24–34. https://doi.org/10.1111/GEB.13603
Herben, T., Chytrý, M., & Klimešová, J. (2016). A quest for species‐level indicator values for disturbance. Journal of Vegetation Science, 27(3), 628-636. https://doi.org/10.1111/jvs.12384>
Herben, T., Klimešová, J., & Chytrý, M. (2018). Effects of disturbance frequency and severity on plant traits: an assessment across a temperate flora. Functional Ecology, 32(3), 799-808. https://doi.org/10.1111/1365-2435.13011>
Following Midolo et al. (2023), the indicator value for soil distuance is expressed as a continuous value ranging from 0 (no change in biomass) to 1 (complete loss of plant cover) caused by factor causing plant biomass death/removal from soil turning and furrowing.
Midolo G., Herben T., Axmanová I., Marcenò C., Pätsch R., Bruelheide H., ... & Chytrý M. (2023). Disturbance indicator values for European plants. Global Ecology and Biogeography, 32, 24–34. https://doi.org/10.1111/GEB.13603
Herben, T., Chytrý, M., & Klimešová, J. (2016). A quest for species‐level indicator values for disturbance. Journal of Vegetation Science, 27(3), 628-636. https://doi.org/10.1111/jvs.12384>
Herben, T., Klimešová, J., & Chytrý, M. (2018). Effects of disturbance frequency and severity on plant traits: an assessment across a temperate flora. Functional Ecology, 32(3), 799-808. https://doi.org/10.1111/1365-2435.13011>
Diagnostic species are characterized by a concentration of their occurrence in the stands belonging to the target vegetation unit while being rare or absent in other vegetation units. For the European vegetation classes of the EuroVegChecklist (Mucina et al. 2016), the list of these species was compiled from various European literature sources, especially syntaxonomic monographs and revisions containing extensive synthetic phytosociological tables. Expert opinion from EuroVegChecklist authors was used to judge problematic cases. Some species were assigned to more than one class. Unlike for the EUNIS habitat types, no statistical approach was used to determine diagnostic species for European vegetation classes.
Mucina L., Bültmann H., Dierßen K., Theurillat J.-P., Raus T., Čarni A., … Tichý L. (2016). Vegetation of Europe: Hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Applied Vegetation Science, 19(Suppl. 1), 3–264. https://doi.org/10.1111/avsc.12257 (Mucina et al. 2016, version 3, 2024-01-01)
Diagnostic species are characterized by a concentration of their occurrence in the stands belonging to the target habitat type while being rare or absent in other habitat types. For the habitat types of the EUNIS classification (Chytrý et al. 2020), these species were determined based on the calculation of fidelity of each species to a group of vegetation plots representing the target habitat type in a geographically and ecologically stratified selection of plots from the European Vegetation Archive (Chytrý et al. 2016). Fidelity was calculated using the phi coefficient of association (Sokal & Rohlf, 1995; Chytrý et al., 2002) standardized as if each habitat was represented by the same number of plots (Tichý & Chytrý, 2006). The species with a value of phi greater than 0.15 for a particular habitat were considered as diagnostic for this habitat. The statistical significance of the species–habitat association was tested using Fisher's exact test (Sokal & Rohlf, 1995), and if not significant at p < 0.05, the species was excluded from the list of diagnostic species (Tichý & Chytrý, 2006).
Chytrý, M., Tichý, L., Hennekens, S. M., Knollová, I., Janssen, J. A. M., Rodwell, J. S., … Schaminée, J. H. J. (2020). EUNIS Habitat Classification: expert system, characteristic species combinations and distribution maps of European habitats. Applied Vegetation Science, 23(4), 648–675. https://doi.org/10.1111/avsc.12519 – Version 2021-06-01: https://doi.org/10.5281/zenodo.4812736
Chytrý, M., Tichý, L., Holt, J., & Botta-Dukát, Z. (2002). Determination of diagnostic species with statistical fidelity measures. Journal of Vegetation Science, 13(1), 79–90. https://doi.org/10.1111/j.1654-1103.2002.tb02025.x
Chytrý, M., Hennekens, S. M., Jiménez-Alfaro, B., Knollová, I., Dengler, J., Jansen, F., … Yamalov, S. (2016). European Vegetation Archive (EVA): an integrated database of European vegetation plots. Applied Vegetation Science, 19(1), 173–180. https://doi.org/10.1111/avsc.12191
Sokal, R. R., & Rohlf, F. J. (1995). Biometry, 3rd edition. New York, NY: Freeman.
Tichý, L., & Chytrý, M. (2006). Statistical determination of diagnostic species for site groups of unequal size. Journal of Vegetation Science, 17(6), 809–818. https://doi.org/10.1111/j.1654-1103.2006.tb02504.x
Constant species are characterized by frequent occurrences in stands belonging to the target vegetation unit, but unlike diagnostic species, they can also commonly occur in other vegetation units. They were determined for the habitat types of the EUNIS classification (Chytrý et al. 2020) based on the calculation of the percentage frequency (constancy) of each species in a group of vegetation plots representing the target habitat type in a geographically and ecologically stratified selection of plots of all habitat types extracted from the European Vegetation Archive (Chytrý et al. 2016). The species with an occurrence frequency in the habitat type higher than 10% were considered as constant taxa.
Chytrý, M., Tichý, L., Hennekens, S. M., Knollová, I., Janssen, J. A. M., Rodwell, J. S., … Schaminée, J. H. J. (2020). EUNIS Habitat Classification: expert system, characteristic species combinations and distribution maps of European habitats. Applied Vegetation Science, 23(4), 648–675. https://doi.org/10.1111/avsc.12519 – Version 2021-06-01: https://doi.org/10.5281/zenodo.4812736
Chytrý M., Hennekens S.M., Jiménez-Alfaro B., Knollová I., Dengler J., Jansen F., … Yamalov S. (2016). European Vegetation Archive (EVA): an integrated database of European vegetation plots. Applied Vegetation Science, 19(1), 173–180. https://doi.org/10.1111/avsc.12191
Species association to broadly defined habitats is based on species occurrences reported for finer units, either vegetation types or habitats. We compiled available data from several sources, Sádlo et al. (2007), Mucina et al. (2016), Guarino et al. (2019). Final list of habitats include 18 broad habitats.
Axmanová, I. (2022). Broad habitat. – www.FloraVeg.EU.
Guarino, R., La Rosa, M. & Pignatti, S. (Eds) (2019). Flora d'Italia, volume 4. Bologna: Edagricole.
Mucina, L., Bültmann, H., Dierßen, K., Theurillat, J.-P., Raus, T., Čarni, A., … Tichý L. (2016). Vegetation of Europe: Hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Applied Vegetation Science, 19(Suppl. 1), 3–264. https://doi.org/10.1111/avsc.12257
Sádlo, J., Chytrý, M. & Pyšek, P. (2007). Regional species pools of vascular plants in habitats of the Czech Republic. Preslia, 79, 303–321.
Continentality degree is derived from the position of species distribution range on the gradient from oceanic Western Europe to continental Middle Asia. The concept and data were taken from Berg et al. (2017), who revised and corrected a previous system of indicator values for continentality developed by Ellenberg et al. (1991). Higher values on the ordinal scale from 1 to 9 indicate species distributed in more continental areas. The species that extend over more than four regions assigned to different continentality classes as defined by Jäger (1968) are considered to be indifferent unless their lower continentality border is located in the regions assigned to continentality class 2 or higher.
Berg C., Welk E. & Jäger E. J. (2017). Revising Ellenberg’s indicator values for continentality based on global vascular plant species distribution. Applied Vegetation Science, 20(3), 482–493. https://doi.org/10.1111/avsc.12306
Ellenberg H., Weber H. E., Düll R., Wirth V., Werner W. & Paulißen D. (1991). Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica, 18, 1–248.
Jäger E. J. (1968) Die pflanzengeographische Ozeanitätsgliederung der Holarktis und die Ozeanitätsbindung der Pflanzenareale. – Feddes Repertorium 79: 157–335.
The concept and data were taken from Berg et al. (2017), who revised and corrected a previous system of indicator values for continentality developed by Ellenberg et al. (1991). Continentality degree is derived from the position of species distribution range on the gradient from oceanic Western Europe (class 1) to continental Middle Asia (class 10). Consequently, continentality amplitude corresponds to the number of phytogeographic continental classes where given species is distributed.
Berg C., Welk E. & Jäger E. J. (2017). Revising Ellenberg’s indicator values for continentality based on global vascular plant species distribution. Applied Vegetation Science, 20(3), 482–493. https://doi.org/10.1111/avsc.12306
Ellenberg H., Weber H. E., Düll R., Wirth V., Werner W. & Paulißen D. (1991). Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica, 18, 1–248.
Jäger E. J. (1968) Die pflanzengeographische Ozeanitätsgliederung der Holarktis und die Ozeanitätsbindung der Pflanzenareale. – Feddes Repertorium 79: 157–335.
number of results: 2