Plant height is measured in meters and relates to fully developed mature generative plants growing in the wild. The data were taken preferably from Kleyer et al. (2008), Guarino et al. (2019), Kaplan et al. (2019), French Flora database (2020) and complemented by additional sources such as national and regional floras. Each species is characterized by a mean value calculated across available datasets.
Axmanová, I. (2022). Plant height. – www.FloraVeg.EU.
Guarino, R., La Rosa, M. & Pignatti, S. (Eds) (2019). Flora d'Italia, volume 4. Bologna: Edagricole.
French Flora database (baseflor), project of Flore et végétation de la France et du Monde: CATMINAT. Available at http://philippe.julve.pagesperso-orange.fr/catminat.htm [accessed June 2020]
Kaplan, Z., Danihelka, J., Chrtek, J. Jr., Kirschner, J., Kubát, K., Štěpánek, J. & Štech, M. (Eds) (2019). Klíč ke květeně České republiky [Key to the flora of the Czech Republic]. Ed. 2. Praha: Academia.
Kleyer, M., Bekker, R. M., Knevel, I. C., Bakker, J. P., Thompson, K., Sonnenschein, M., … Peco, B. (2008). The LEDA Traitbase: A database of life-history traits of the Northwest European flora. Journal of Ecology, 96(6), 1266–1274. https://doi.org/10.1111/j.1365-2745.2008.01430.x
Specific leaf area (SLA) is the ratio of leaf area to leaf dry mass expressed in mm2 mg-1, reflecting the amount of energy plants invest in their leaf biomass. SLA is related to plant growth strategy with respect to water availability and temperature. The data were taken preferably from Kleyer et al. (2008), Tavşanoğlu & Pausas (2018), Ladouceur et al. (2019) and complemented by additional sources. Each species is characterized by a mean value calculated across available datasets.
Axmanová, I. (2022). Specific leaf area. – www.FloraVeg.EU.
Kleyer, M., Bekker, R. M., Knevel, I. C., Bakker, J. P., Thompson, K., Sonnenschein, M., … Peco, B. (2008). The LEDA Traitbase: A database of life-history traits of the Northwest European flora. Journal of Ecology, 96(6), 1266–1274. https://doi.org/10.1111/j.1365-2745.2008.01430.x
Ladouceur, E., Bonomi, C., Bruelheide, H., Klimešová, J., Burrascano, S., Poschlod, P., … Jiménez-Alfaro, B. (2019). The functional trait spectrum of European temperate grasslands. Journal of Vegetation Science, 30(5), 777–788. https://doi.org/10.1111/jvs.12784
Tavşanoğlu, Ç., & Pausas, J. (2018). A functional trait database for Mediterranean Basin plants. Scientific data, 5, 180135. https://doi.org/10.1038/sdata.2018.135
Seed mass represent the mean weight of 1000 seeds in a dry state, measured in grams. The data were taken preferably from Kleyer et al. (2008), Hintze et al. (2013), García-Gutiérrez et al. (2018) and Seed Information Database (Royal Botanic Gardens Kew 2021) and complemented by additional sources such as national and regional floras. Each species is characterized by a mean value calculated across available datasets. Upon request, minimum, maximum and median values are also available.
Axmanová, I. (2022). Seed mass. – www.FloraVeg.EU.
García-Gutiérrez, T., Jiménez-Alfaro, B., Fernández-Pascual, E., & Müller, J. V. (2018). Functional diversity and ecological requirements of alpine vegetation types in a biogeographical transition zone. Phytocoenologia, 77–89. https://doi.org/10.1127/phyto/2017/0224
Hintze, C., Heydel, F., Hoppe, C., Cunze, S., König, A., & Tackenberg, O. (2013). D3: The Dispersal and Diaspore Database – Baseline data and statistics on seed dispersal. Perspectives in Plant Ecology, Evolution and Systematics, 15(3), 180–192. https://doi.org/10.1016/j.ppees.2013.02.001
Kleyer, M., Bekker, R. M., Knevel, I. C., Bakker, J. P., Thompson, K., Sonnenschein, M., … Peco, B. (2008). The LEDA Traitbase: A database of life-history traits of the Northwest European flora. Journal of Ecology, 96(6), 1266–1274. https://doi.org/10.1111/j.1365-2745.2008.01430.x
Royal Botanic Gardens Kew. (2021). Seed Information Database (SID). Version 7.1. Available at: http://data.kew.org/sid/ [accessed May 2021]
Dispersal mode (dispersal syndrome, dispersal type) characterizes plant dispersal ability. It is represented by following categories: (i) local non-specific dispersal, which combines self-dispersal (autochory) and dispersal initiated by wind, where diaspores do not have any efficient special dispersal features, including several dispersal modes (namely ballochory, blastochory, boleochory, barochory); (ii) myrmecochory (ant dispersal); (iii) wind dispersal (anemochory), diaspores have special dispersal features such as hem, pappus, trichomes, dusty seeds or the species are tumbleweeds; (iv) animal dispersal includes dyszoochory, i.e. diaspores foraged by animals, which sometimes hide them as stock; (v) endozoochory, i.e. dispersal in animal gastrointestinal tract, and (vi) epizoochory, i.e., dispersal of diaspores attached on animal fur; special case is the (vii) anthropochory, i.e. human dispersal and (viii) hydrochory (water dispersal). Please note that hydrochory is not considered in the dispersal distance classes classification.
The dispersal modes are mainly estimated from species' morphological characteristics.
Lososová Z., Axmanová I., Chytrý M., Midolo G., Abdulhak S., Karger D.N., Renaud J., Van Es J., Vittoz P. & Thuiller W. (2023). Seed dispersal distance classes and dispersal modes for the European flora. Global Ecology and Biogeography, 32(9), 1485–1494.
Vittoz P. & Engler R. (2007). Seed dispersal distances: a typology based on dispersal modes and plant traits. Botanica Helvetica, 117, 109–124.
Dispersal distance classes are represented by ordered classes from 1 to 7, where classes 1 to 6 represent a gradient from short-distance dispersal to long-scale dispersal. The last class represents the dispersal mediated by humans. For species of the last class the assignment to the previous six classes and natural dispersal mode are given. The assignment of individual plants follows Lososová et al. (2023), a dataset prepared using the adjusted methodology of Vittoz & Engler (2007).
To assign plants into dispersal distance classes, several plant characteristics were obtained from various sources, namely plant height, life form, predominant dispersal mode, seed mass, typical habitat, plant geographical origin and information on dispersal by humans. In contrast to the original approach of Vittoz & Engler (2007), definitions of the dispersal distance classes were slightly modified.
Class 1 contains species shorter than 0.3 m. Their seeds do not have any specific dispersal features. Species are mostly self-dispersed, although seed dispersal can be initiated by wind, e.g., by shaking the fruit, which causes the diaspore to fall down. Class 2 is the most species-rich, including species with non-specific local dispersal strategy taller than 0.3 m. Class 3 includes ant-dispersed (myrmecochorous) species and wind-dispersed (anemochorous) forest herbs and dwarf shrubs. Class 4 is the least species-rich, including less efficient wind-dispersed woody plants and tumbleweeds. Class 5 includes wind-dispersed herbs and shrubs of open habitats and wind-dispersed trees with more efficient dispersal units (with trichomes). Class 6 includes species with different modes of animal dispersal. They can be dyszoochorous (i.e., foraged by animals, which sometimes hide them as stock), endozoochorous (i.e., dispersal in animal gastrointestinal tract), and epizoochorous (i.e., dispersal on animal fur). Finally, class 7 contains human-dispersed (antropochorous) species.
The species of the last class are also classified into one of the previous six classes based on their natural dispersal mode. Only classes 1-6 can be used in studies at the landscape scale where it is assumed that most species disperse naturally. All seven classes can be used in studies at a broader geographical scale where rare events of long-distance human dispersal are important.
Classes
Lososová Z., Axmanová I., Chytrý M., Midolo G., Abdulhak S., Karger D.N., Renaud J., Van Es J., Vittoz P. & Thuiller W. (2023). Seed dispersal distance classes and dispersal modes for the European flora. Global Ecology and Biogeography, 32(9), 1485–1494.
Vittoz P. & Engler R. (2007). Seed dispersal distances: a typology based on dispersal modes and plant traits. Botanica Helvetica, 117, 109–124.
In plant parasitism, two groups can be distinguished based on two different mechanisms. The first group of parasitic plants includes those directly parasitizing on another plant. These plants are called haustorial parasites. Using a specialized organ, the haustorium, they attach themselves to other plants and uptake resources from the host’s vascular bundles. The second group comprises mycoheterotrophic plants, which parasitise fungi via mycorrhizal interactions and gain organic carbon from them. Plants in both groups display variable dependence on their host organism.
The functional categorization of parasitic plants has been a topic of an active debate that is still ongoing. The traditional categories are based on the ability to perform photosynthesis (photosynthetic hemiparasites and non-green holoparasites) and the location of the haustoria (root and stem parasites) (Heide-Jørgensen 2008). However, such a classification system struggles with phenomena such as rudimentary photosynthesis in some species, variable photosynthetic activity throughout the life cycle, and the existence of parasitic plants that integrate with their host to such an extent that they can be considered endophytic. For the functional classification of European parasitic plants, we have adopted the most recent classification system proposed by Teixeira-Costa & Davis (2021) with small further modifications. This system relies primarily on ontogenetic development and strategies of attachment to the host. The values of other important functional traits, including photosynthetic capacity, type of vascular bundle connection, development of the primary haustorium, and location of haustoria on the host are also well discriminated by the categories of Teixeira-Costa & Davis (2021).
In mycoheterotrophic plants, the initial developmental stages (gametophytes in lycophytes and ferns or belowground seedling stages of other plants) are not green, obtaining all their organic carbon and other resources from the fungus. The adult stages are still dependent on the mycorrhizal fungi as a source of water and mineral nutrients but vary in their dependence on heterotrophic carbon: there is a continuum from autotrophy, where the adult plants no longer use fungal carbon (this strategy is further called ‘initial mycoheterotrophy’), through mixotrophy (the adult plants combine autotrophic with heterotrophic nutrition; further called ‘partial mycoheterotrophy’), to heterotrophy (further called ‘full mycoheterotrophy’) (Merckx 2012). Two categories are distinguished here:
Těšitel, J., Těšitelová, T., Fahs, N., Blažek, P., Knotková, K. & Axmanová, I. (2023): Parasitism and mycoheterotrophy. – www.FloraVeg.eu.
Bellino, A., Alfani, A., Selosse, M.-A., Guerrieri, R., Borghetti, M., & Baldantoni, D. (2014). Nutritional regulation in mixotrophic plants: New insights from Limodorum abortivum. Oecologia, 175(3), 875–885. https://doi.org/10.1007/s00442-014-2940-8
Cameron, D. D., Preiss, K., Gebauer, G., & Read, D. J. (2009). The chlorophyll-containing orchid Corallorhiza trifida derives little carbon through photosynthesis. New Phytologist, 183(2), 358–364. https://doi.org/10.1111/j.1469-8137.2009.02853.x
Heide-Jørgensen, H. S. (2008). Parasitic flowering plants. Brill, Leiden.
Kubat, R. & Weber, H. C. (1987). Zur Biologie von Rhynchcorys elephas (L.) Griseb. (Scrophulariaceae). Beiträge zur Biologie der Pflanzen, 62, 239–250.
McNeal, J. R., Arumugunathan, K., Kuehl, J. V., Boore, J. L., & dePamphilis, C. W. (2007). Systematics and plastid genome evolution of the cryptically photosynthetic parasitic plant genus Cuscuta (Convolvulaceae). BMC Biology, 5(1), 55. https://doi.org/10.1186/1741-7007-5-55
Merckx, V. S. F. T. (Ed). (2012). Mycoheterotrophy: the biology of plants living on fungi. Springer, Berlin.
Miller, J. R., & Tocher, R. D. (1975). Photosynthesis and respiration of Arceuthobium tsugense (Loranthaceae). American Journal of Botany, 62(7), 765–769. https://doi.org/10.2307/2442068
Preiss, K., Adam, I. K. U., & Gebauer, G. (2010). Irradiance governs exploitation of fungi: Fine-tuning of carbon gain by two partially myco-heterotrophic orchids. Proceedings of the Royal Society B: Biological Sciences, 277(1686), 1333–1336. https://doi.org/10.1098/rspb.2009.1966
Rey, L., Sadik, A., Fer, A., & Renaudin, S. (1991). Trophic relations of the dwarf mistletoe Arceuthobium oxycedri with its host Juniperus oxycedrus. Journal of Plant Physiology, 138(4), 411–416. https://doi.org/10.1016/S0176-1617(11)80515-8
Schiebold, J. M.-I., Bidartondo, M. I., Lenhard, F., Makiola, A., & Gebauer, G. (2018). Exploiting mycorrhizas in broad daylight: Partial mycoheterotrophy is a common nutritional strategy in meadow orchids. Journal of Ecology, 106(1), 168–178. https://doi.org/10.1111/1365-2745.12831
Teixeira-Costa, L., & Davis, C. C. (2021). Life history, diversity, and distribution in parasitic flowering plants. Plant Physiology, 187(1), 32–51. https://doi.org/10.1093/plphys/kiab279
Těšitel, J. (2016). Functional biology of parasitic plants: A review. Plant Ecology and Evolution, 149(1), Article 1. https://doi.org/10.5091/plecevo.2016.1097
Těšitel, J., Těšitelová, T., Blažek, P., & Lepš, J. (2016). Parasitism and mycoheterotrophy.
www.pladias.cz.
Weber, H. C. (1973). Zur Biologie von Tozzia alpina L. (Standort, Wirtspflanzen, Entwicklung und Parasitismus). Beiträge zur Biologie der Pflanzen, 49, 237–249.
Zimmer, K., Meyer, C., & Gebauer, G. (2008). The ectomycorrhizal specialist orchid Corallorhiza trifida is a partial myco-heterotroph. New Phytologist, 178(2), 395–400. https://doi.org/10.1111/j.1469-8137.2007.02362.x
Carnivorous plants attract, trap and kill their prey, mainly insects, small crustaceans and protozoans, and subsequently absorb the nutrients from the dead bodies. Carnivorous species occur in environments with extremely low availability of nutrients, especially nitrogen and phosphorus, e.g. mires. In contrast, they usually have enough light (open habitats) and high water table or precipitation levels (Fleischmann et al. 2017). Therefore, the carnivory improves the intake of nutrients essential for growth but sparse in the environment, while the main source of energy for these plants is photosynthesis (Fleischmann et al. 2017).
Although there is a variety of morphological structures and trapping mechanisms, all the traps evolved as more or less complicated modifications of leaves with glandulous hairs (Hedrich & Fukushima 2021). Examples of active-hunting carnivorous plants include Aldrovanda with snap traps and Utricularia with suction traps. Typical representatives of the passive-trapping species can be found in the genera Drosera, Drosophyllum and Pinguicula, which have specific types of adhesive leaves. Another passive mechanism is the pitfall trap of Sarracenia (Hedrich & Fukushima 2021). Some species can combine adhesive traps with active movement of either glands or parts of the leaves (e.g. some species of Drosera).
The carnivory evolved independently in relatively distant lineages of angiosperms. There are carnivorous families within the orders Poales, Oxalidales, Caryophyllales, Ericales and Lamiales (Hedrich & Fukushima 2021). This convergent evolution of carnivory was possible because the traits associated with carnivorous syndrome from trap development through prey digestion to nutrient absorption are modifications of structures found also in non-carnivorous ancestors, where these originally served as defending mechanisms (Hedrich & Fukushima 2021).
In Europe, there are only three native carnivorous families, namely Droseraceae, Drosophyllaceae (order Caryophyllales), and Lentibulariaceae (Lamiales). Carnivorous plants have however often been planted and imported to Europe. Some of these non-native carnivorous species introduced to Europe can also survive in natural habitats and establish vital populations. For example, the species of Sarracenia (Sarraceniaceae, Ericales), native to North America, have nowadays scattered secondary occurrences across western and northwestern Europe.
Axmanová, I. (2023): Carnivory. – www.FloraVeg.eu.
Fleischmann, A., Schlauer, J., Smith, S. A., & Givnish, T. J. (2017). Evolution of carnivory in angiosperms. In Ellison, A. & Adamec, L. (Eds.), Carnivorous Plants: Physiology, ecology, and evolution (p. 22–41). Oxford University Press. https://doi.org/10.1093/oso/9780198779841.003.0003
Hedrich, R., & Fukushima, K. (2021). On the Origin of Carnivory: Molecular Physiology and Evolution of Plants on an Animal Diet. Annual Review of Plant Biology, 72(1), 133–153. https://doi.org/10.1146/annurev-arplant-080620-010429
Plants that are able to form a symbiosis with nitrogen-fixing bacteria are classified as nitrogen-fixing plants or nitrogen fixers. Specific bacteria are able to fix atmospheric nitrogen in a way to make it directly accessible to the plants (Franche et al. 2009). For providing nitrogen to the plant, the bacteria receive carbon in return (Crews, 1999, Dilworth et al., 2008). When forming a symbiosis with vascular plants, these bacteria usually inhabit the roots of their symbiont, forming so called (root-)nodules (Akkermans & Houwers, 1983, Fyson & Sprent, 1980, Loureiro et al., 1994). Three different symbiotic relationships between vascular plants and bacteria can be distinguished: (1) with the endosymbiotic cyanobacteria Nostoc, (2) with rhizobia (e.g. Allorhizobium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium) and (3) with Frankia, so-called actinorhizal plants (Bond 1983, Pawlowski & Sprent 2007, Sprent 2008, Benson 2016, Tedersoo et al., 2018). Nitrogen fixation is not a completely phylogenetically conserved trait but evolved and disappeared a few times in the evolution of plants. For the first time it evolved in the Cycadales in Gymnosperms (symbiosis with cyanobacteria, plant species not native to Europe). Most of the nitrogen-fixing plants are however phylogenetically related and recruit from the so-called “Nitrogen-fixing clade” sensu Soltis et al. (1995). Only the family Zygophyllaceae (associated with rhizobia) and the non-native Gunnera, the only genus recorded in Europe associated with Nostoc, do not belong to this clade, representing the exceptions in Angiosperms. Only five native taxa (the genus Alnus, Hippophae rhamnoides, Myrica gale, Elaeagnus angustifolia and Coriaria myrtifolia) and some non-native species with sporadic occurrence are associated with Frankia in Europe. The largest number of nitrogen-fixing species form symbiosis with rhizobia. This includes almost all Fabaceae (uncertain genera and likely exceptions, respectively, are known only very few occurring in Europe: among others this includes Cercis, Erinacea, Gonocytisus, Hammatolobium, Podocytisus, Dorycnopsis (all native), Gleditsia, Cytisopsis, Styphnolobium, Gymnocladus (not native), plus Zygophyllaceae (with uncertain genera Balanites, Seetzenia and Tetraena occurring in Europe).
Assignment was done on the genus-level. Although rare cases of species-specific differences concerning the symbiotic nitrogen fixation status within one genus are known worldwide, for the European flora the general consent that the status is conserved on the genus level is still accepted. Assignment of “likely” or “unlikely” symbiosis with rhizobia is mainly based on their phylogenetic position where there has been no scientific study investigating the nitrogen fixation status of the genus directly or if studies showed diverging results.
Fahs, N., Blažek, P., Těšitel, J. & Axmanová, I. (2023). Symbiotic nitrogen fixation. – www.FloraVeg.eu.
Benson D. R. (2016). Frankia & actinorhizal plants. Available at https://frankia.mcb.uconn.edu/ [accessed on 1 Feb 2021]
Blažek, P. & Lepš, J. (2016). Symbiotic nitrogen fixation. – www.pladias.cz.
Bond, G. (1983). Taxonomy and distribution of non-legume nitrogen-fixing systems. In J. C. Gordon & C. T. Wheeler (Eds.), Biological nitrogen fixation in forest ecosystems: Foundations and applications (pp. 55–87). Springer Netherlands. https://doi.org/10.1007/978-94-009-6878-3_3
Crews, T. E. (1999). The presence of nitrogen fixing legumes in terrestrial communities: Evolutionary vs ecological considerations. Biogeochemistry, 46(1), 233–246. https://doi.org/10.1007/BF01007581
Dilworth M. J., James E. K., Sprent J. I., & Newton W. E. (Eds). (2008). Nitrogen-Fixing Leguminous Symbioses. Springer Netherlands.
Franche, C., Lindström, K., & Elmerich, C. (2009). Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant and Soil, 321(1), 35–59. https://doi.org/10.1007/s11104-008-9833-8
Fyson, A., & Sprent, J. I. (1980). A Light and Scanning Electron Microscope Study of Stem Nodules in Vicia faba L. Journal of Experimental Botany, 31(123), 1101–1106.
Loureiro, M. F., DE Faria, S. M., James, E. K., Pott, A., & Franco, A. A. (1994). Nitrogen-fixing stem nodules of the Legume, Discolobium pulchellum Benth. The New Phytologist, 128(2), 283–295. https://doi.org/10.1111/j.1469-8137.1994.tb04012.x
Pawlowski, K., & Sprent, J. I. (2008). Comparison Between Actinorhizal And Legume Symbiosis. In K. Pawlowski & W. E. Newton (Eds.), Nitrogen-fixing Actinorhizal Symbioses (pp. 261–288). Springer Netherlands. https://doi.org/10.1007/978-1-4020-3547-0_10
Soltis, D. E., Soltis, P. S., Morgan, D. R., Swensen, S. M., Mullin, B. C., Dowd, J. M., & Martin, P. G. (1995). Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms. Proceedings of the National Academy of Sciences of the United States of America, 92(7), 2647–2651.
Sprent, J. I. (2008). Evolution and Diversity of Legume Symbiosis. In M. J. Dilworth, E. K. James, J. I. Sprent, & W. E. Newton (Eds.), Nitrogen-fixing Leguminous Symbioses (pp. 1–21). Springer Netherlands. https://doi.org/10.1007/978-1-4020-3548-7_1
Tedersoo, L., Laanisto, L., Rahimlou, S., Toussaint, A., Hallikma, T., & Pärtel, M. (2018). Global database of plants with root-symbiotic nitrogen fixation: NodDB. Journal of Vegetation Science, 29(3), 560–568. https://doi.org/10.1111/jvs.12627
Origin in Europe was assessed according to the geographic origin of the species. Native taxa are plants that are native to at least part of Europe, although some of them are nowadays alien in other European regions. Species introduced intentionally or unintentionally by humans to Europe from other continents are alien (non-native) plants. We distinguished two categories of alien plants according to their residence time. Archaeophytes are plants introduced to Europe until the Middle Ages, while neophytes are plants introduced after 1500 AD. Data were compiled from Pyšek et al. (2012), GloNAF database (van Kleunen et al 2019), Verloove (2019), Euro+Med database (2021), POWO database (POWO 2021), complemented by additional sources such as national and regional floras.
Axmanová, I. (2022). Origin in Europe. – www.FloraVeg.EU.
van Kleunen, M., Pyšek, P., Dawson, W., Essl, F., Kreft, H., Pergl, J. et al. (2019). The Global Naturalized Alien Floras (GloNAF) database. Ecology, 100(1):e02542. https://doi.org/10.1002/ecy.2542
Euro+Med (2021). Euro+Med PlantBase – the information resource for Euro-Mediterranean plant diversity. Available at http://ww2.bgbm.org/EuroPlusMed/query.asp [accessed May 2021]
POWO (2021). Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Available at http://www.plantsoftheworldonline.org/ [accessed May 2021]
Pyšek P., Danihelka J., Sádlo J., Chrtek J. Jr., Chytrý M., … Tichý L. (2012) Catalogue of alien plants of the Czech Republic (2nd edition): checklist update, taxonomic diversity and invasion patterns. Preslia 84(2), 155–255.
Verloove, F. (2019). Manual of the Alien Plants of Belgium. Available at http://alienplantsbelgium.be/ [accessed May 2019]
Categories of substrate humidity do not reflect fine differences of various habitats, on the contrary, they are defined very broadly. These categories can be derived also from the ordinal scale for moisture (1-12) defined by Ellenberg et al. (1991). Plants adapted to growing in dry soils, or soils that frequently dry out, are assigned to a category Dry, which corresponds to the first four degrees of the Ellenberg scale (1-4). Accordingly, plants of mesic habitats are assigned to the category Mesic (5 and 6 of the Ellenberg scale), plants of wet to soaked, poorly aerated soils are in the category Wet (7-9), and finally, aquatic plants are assigned to the category Water (10-12). If available, we used Ellenberg-type indicator values aggregated to broader categories, in other cases, categories were assigned according to the knowledge of local experts.
Data were compiled from several sources available across Europe, namely the indicator-value datasets for Great Britain (Hill et al. 2000), Cantabrian Range in Spain (Jiménez-Alfaro et al. 2021), France (Julve 2015), Germany (Ellenberg et al. 2001, taken from Ellenberg & Leuschner 2010), Switzerland (Landolt et al. 2010), Austria (Karrer 1992), Czech Republic (Chytrý et al. 2018), Hungary (Borhidi 1995), Ukraine (Didukh 2011), Italy (Guarino & La Rosa 2019, with additional corrections by R. Guarino), Southern Aegean region of Greece (Böhling et al. 2002) and European mires (Hájek et al. 2020).
Axmanová, I. (2022). Substrate humidity relationship. – www.FloraVeg.EU.
Böhling, N., Greuter, W. & Raus, T. (2002). Zeigerwerte der Gefäßpflanzen der Südägäis (Griechenland) [Indicator values of the vascular plants in the Southern Aegean (Greece)]. Braun-Blanquetia, 32, 1–108.
Borhidi, A. (1995). Social behaviour types, the naturalness and relative ecological indicator values of the higher plants in the Hungarian flora. Acta Botanica Hungarica, 39, 97–181.
Chytrý, M., Tichý, L., Dřevojan, P., Sádlo, J. & Zelený, D. (2018). Ellenberg-type indicator values for the Czech flora. Preslia, 90, 83–103.
Didukh Ya.P. (2011). The ecological scales for the species of Ukrainian flora and their use in synphytoindication. Kyiv: Phytosociocentre.
Ellenberg, H., Weber, H. E., Düll, R., Wirth, V., Werner, W. & Paulißen, D. (1991). Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica, 18, 1–248.
Ellenberg, H. & Leuschner, C. (2010). Zeigerwerte der Pflanzen Mitteleuropas. In: Ellenberg H. & Leuschner, C., Vegetation Mitteleuropas mit den Alpen. Stuttgart: Verlag Eugen Ulmer.
French Flora database (baseflor), project of Flore et végétation de la France et du Monde: CATMINAT. Available at http://philippe.julve.pagesperso-orange.fr/catminat.htm [accessed June 2020]
Guarino, R., La Rosa, M. & Pignatti, S. (Eds) (2019). Flora d'Italia, volume 4. Bologna: Edagricole.
Hill, M.O., Roy, D.B., Mountford, J.O., & Bunce, R.G.H. (2000). Extending Ellenberg’s indicator values to a new area: an algorithmic approach. Journal of Applied Ecology, 37, 3–15.
Jiménez-Alfaro, B., Carlón, L., Fernández-Pascual, E., Acedo, C., Alfaro-Saiz, E., Alonso Redondo, R., … Vázquez, V. M. (2021). Checklist of the vascular plants of the Cantabrian mountains. Mediterranean Botany, 42, e74570.
Karrer, G. (1992). Österreichische Waldboden-Zustandsinventur. Teil VII: Vegetationsökologische Analysen. Mitteilungen der forstlichen Bundesversuchsanstalt Wien, 168, 193-242.
Landolt, E., Bäumler, B., Erhardt, A., Hegg, O., Klötzli, F., Lämmler, W., … Wohlgemuth, T. (2010). Flora indicativa – Ökologische Zeigerwerte und biologische Kennzeichen zur Flora der Schweiz und der Alpen. Bern: Haupt Verlag.
Ellenberg-type indicator values for European plant species are expert-based rankings of plant species according to their ecological optima on main environmental gradients, using ordinal scales defined by Ellenberg et al. (1991). The indicator values for moisture are expressed on an ordinal scale from 1 to 12 defined by Ellenberg et al. (1991).
Values for individual species were calculated as the means across available national or regional datasets of plant indicator values or were newly assigned based on species co-occurrences in European vegetation plots, see Tichý et al. (2023). Although they have one decimal place, the newly introduced indicator values are compatible with the original Ellenberg values. They can be used for large-scale studies of European flora and vegetation or gap-filling in regional datasets.
Datasets used for compilation include several sources, namely Ellenberg-type indicator values for Great Britain (Hill et al., 2000); France (Julve, 2015); Germany (Ellenberg et al., 2001, taken from Ellenberg & Leuschner, 2010); Czech Republic (Chytrý et al., 2018); Austria (Karrer, 1992); Hungary (Borhidi, 1995); Ukraine (Didukh, 2011); Italy (Guarino & La Rosa, 2019, a corrected version prepared by R. Guarino); South Aegean region of Greece (Böhling et al., 2002); European mires (Hájek et al., 2020).
The European values and also the original and taxonomically harmonized regional datasets of Ellenberg-type indicator values are available in the Download section of this website.
Tichý L., Axmanová I., Dengler J., Guarino R., Jansen F., Midolo G., … Chytrý M. (2023). Ellenberg-type indicator values for European vascular plant species. Journal of Vegetation Science, 34, e13168. https://doi.org/10.1111/jvs.13168
Böhling, N., Greuter, W. & Raus, T. (2002). Zeigerwerte der Gefäßpflanzen der Südägäis (Griechenland) [Indicator values of the vascular plants in the Southern Aegean (Greece)]. Braun-Blanquetia, 32, 1–108.
Borhidi, A. (1995). Social behaviour types, the naturalness and relative ecological indicator values of the higher plants in the Hungarian flora. Acta Botanica Hungarica, 39, 97–181.
Chytrý M., Tichý L., Dřevojan P., Sádlo J. & Zelený D. (2018). Ellenberg-type indicator values for the Czech flora. Preslia 90: 83–103.
Didukh Ya.P. (2011). The ecological scales for the species of Ukrainian flora and their use in synphytoindication. Kyiv: Phytosociocentre.
Ellenberg H., Weber H. E., Düll R., Wirth V., Werner W. & Paulißen D. (1991). Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica, 18, 1–248.
Ellenberg, H. & Leuschner, C. (2010). Zeigerwerte der Pflanzen Mitteleuropas. In: Ellenberg H. & Leuschner, C., Vegetation Mitteleuropas mit den Alpen. Stuttgart: Verlag Eugen Ulmer.
Guarino, R., La Rosa, M. & Pignatti, S. (Eds) (2019). Flora d'Italia, volume 4. Bologna: Edagricole.
Hájek, M., Dítě, D., Horsáková, V., Mikulášková, E., Peterka, T., Navrátilová, J., … Horsák M. (2020). Towards the pan-European bioindication system: Assessing and testing updated hydrological indicator values for vascular plants and bryophytes in mires. Ecological Indicators, 116, 106527.
Hill, M.O., Roy, D.B., Mountford, J.O., & Bunce, R.G.H. (2000). Extending Ellenberg’s indicator values to a new area: an algorithmic approach. Journal of Applied Ecology, 37, 3–15.
Julve, P. (2015). Baseflor. Index botanique, écologique et chorologique de la flore de France (Baseflor. Botanical, ecological and chorological index of the flora of France). Available at http://philippe.julve.pagesperso-orange.fr/catminat.htm [accessed 2022].
Karrer, G. (1992). Österreichische Waldboden-Zustandsinventur. Teil VII: Vegetationsökologische Analysen (Austrian forest soil status inventory. Part VII: Vegetation ecology analyses). Mitteilungen Forstliche Bundesversuchsanstalt Wien, 168, 193–242.
Diagnostic species are characterized by a concentration of their occurrence in the stands belonging to the target vegetation unit while being rare or absent in other vegetation units. For the European vegetation classes of the EuroVegChecklist (Mucina et al. 2016), the list of these species was compiled from various European literature sources, especially syntaxonomic monographs and revisions containing extensive synthetic phytosociological tables. Expert opinion from EuroVegChecklist authors was used to judge problematic cases. Some species were assigned to more than one class. Unlike for the EUNIS habitat types, no statistical approach was used to determine diagnostic species for European vegetation classes.
Mucina L., Bültmann H., Dierßen K., Theurillat J.-P., Raus T., Čarni A., … Tichý L. (2016). Vegetation of Europe: Hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Applied Vegetation Science, 19(Suppl. 1), 3–264. https://doi.org/10.1111/avsc.12257 (Mucina et al. 2016, version 3, 2024-01-01)
Species association to broadly defined habitats is based on species occurrences reported for finer units, either vegetation types or habitats. We compiled available data from several sources, Sádlo et al. (2007), Mucina et al. (2016), Guarino et al. (2019). Final list of habitats include 18 broad habitats.
Axmanová, I. (2022). Broad habitat. – www.FloraVeg.EU.
Guarino, R., La Rosa, M. & Pignatti, S. (Eds) (2019). Flora d'Italia, volume 4. Bologna: Edagricole.
Mucina, L., Bültmann, H., Dierßen, K., Theurillat, J.-P., Raus, T., Čarni, A., … Tichý L. (2016). Vegetation of Europe: Hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Applied Vegetation Science, 19(Suppl. 1), 3–264. https://doi.org/10.1111/avsc.12257
Sádlo, J., Chytrý, M. & Pyšek, P. (2007). Regional species pools of vascular plants in habitats of the Czech Republic. Preslia, 79, 303–321.
No subordinate taxa were found for this item.